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In summary, we have developed new and mild reaction con­
ditions for glycosylation of iodo sulfonamides, which has enabled 
us to successfully synthesize sialyl-Lewis X antigen. Current 
studies include the elaboration of glycals 5-7 to the synthesis of 
gangliosides10 and glycopeptides.11 
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Myrocin C (1) is a structurally novel pentacyclic diterpene 
isolated in 1988 from the soil fungus Myrothecium verrucaria 
strain no. SS.1 This antitumor antibiotic exhibits half the activity 
of mitomycin C in an in vivo tumor inhibitory screen.2 Our 
interest in the synthesis of myrocin C stemmed from two con­
siderations. The confluence of its structural features posed con­
siderable synthetic challenges which invited several potentially 
interesting solutions. Furthermore, a proposed mechanism for 
the biotriggering of 1 could be inferred,3 the testing of which 
required access to 6-desoxymyrocin C (18). In this paper we report 
the total synthesis of racemic 1 by way of 18. 

A critical reaction of the synthesis occurs in the first step 
wherein compound 2 was obtained from Diels-Alder cycloaddition 
(THF, room temperature, 5 days, 94%) of p-benzoquinone with 
2-[(/er/-butyldimethylsilyl)oxy]-l-methylcyclohexa-l,3-diene4 
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Scheme I 

myrocin C (1) 2 

(note the stereochemical homology between C-I, C-4, and C-5 
of 1 and the corresponding centers of 2). Oxidation5 (2,2-di-
methyldioxirane,6 acetone/CH2Cl2) of 2 afforded 3, which upon 
reduction7 (NaBH4, CeCl3-7H20, MeOH), acetylation (Ac2O, 
Et3N, DMAP, CH2Cl2), and desilylation (TBAF, AcOH, THF) 
gave 4 (59% overall from 2). Cleavage of the vicinal "diol" linkage 
(NaIO4, THF/H20) followed by reduction (NaBH4, MeOH) of 
the lactone aldehyde and protection (TBSOTf, Et3N, CH2Cl2) 
of the primary alcohol afforded 5 in 99% overall yield from 4. 
Deacetylation (NaOMe, MeOH) and subsequent oxidation 
(PDC,8 CH2Cl2) afforded enone 6, which was stereospecifically 
epoxidized' (H2O2, NaOH, MeOH) to afford epoxy ketone 7 (66% 
overall yield from 5). The resulting oxiranyl linkage exhibited 
surprising stability to the following sequence; (i) enol triflation10 

(NaHMDS, Tf2NPh, THF), (ii) cross-coupling11 (Bu3SnCH= 
CH2, PdCl2(PPh3)2, LiCl, THF), (iii) desilylation (TBAF, AcOH, 
THF), and (iv) mesylation (MsCl, Et3N, DMAP, CH2Cl2). 
Compound 8 was thus obtained in 40% overall yield from 7 
(Scheme I). 

The elements were then in place for the defining reaction of 
the synthesis. Upon treatment of compound 8 with (trimethyl-
stannyl)lithium12 in THF, cyclopropyl dienol 10 was produced 
in 66% yield, presumably through the intermediacy of allyl-
stannane 9.13 It will be recognized that this transformation 
accomplishes installation of the cyclopropane while liberating the 
C-7 alcohol. The latter, of course, is destined to become the C-7 
ketone in 1. However, before that oxidation, this alcohol serves 
another important strategic end. Thus, condensation (DCC, 
DMAP, CH2Cl2) of 10 with (£)-3-methyl-4-oxo-2-butenoic acid14 

afforded 11, which upon thermolysis (PhH, reflux, 13 h) gave, 
by endo addition of the aldehyde function, the adduct 12. Wittig 
olefination (Ph3P=CH2, THF) provided 13 (79% overall yield 
from 10) in which C-14 had undergone complete epimerization 
to the j8-configuration. This intramolecular Diels-Alder reac­
tion,^ achieved through the C-7 ester tether, has not only provided 
a usefully functionalized C-ring but has also enabled rigorous 
control of the remote C-13 chiral center. 

The now extraneous carbon (C-21) was excised as follows. 
Reduction (DIBAL-H, CH2Cl2) of 13 gave a bislactol which upon 
selective oxidation (PDC, CH2Cl2) afforded compound 14 (74%). 
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Scheme II 

CHO 

; X. P-H, ct-OCHO 
16: R= H; X=O 

Me" 
0' 

12: X=Y=O; C-14Ho 
13: X= OiY=CH2; C-HHp 
14: X. H, OH;Y=CH2;C-14HP 

18: X= H; 6-desoxymyrocin C 
1~1: X = OH; myrocin C | 

Photolytically mediated iodinative cleavage16 (PhI(OAc)2, I2, 
cyclohexane) of the lactol linkage gave rise to iodo formates 15 
(7:1 /3/o), which upon reductive deiodination/deformylation 
(neat1' Bu3SnH, AIBN) and oxidation (Dess-Martin per-
iodinane,18 CH2Cl2) provided ketone 16. Concomitant enone 
conjugation and stereospecific epoxidation (H2O2, NaOH, MeOH) 
gave 17 in 50% overall yield from 14 (Scheme II). 

Oxirane opening (4-OMePhSAlMe3Li,19 THF) followed by 
sulfoxide formation (2,2-dimethyldioxirane, acetone/CH2Cl2) and 
spontaneous elimination provided desoxymyrocin C (18) in 55% 
overall yield. Finally, C-6 hydroxylation20 (O2, f-BuOK, 
THF/f-BuOH) was achieved via the presumed, but uncharac-
terized, C-6 hydroperoxide which was immediately reduced 
(P(OEt)3, THF) to give d/-myrocin C (1), mp >214 0C dec, in 
68% yield. While the spectral properties of the fully synthetic 
material corresponded very closely to those recorded for the natural 
product, a sample of the latter was not available to us for direct 
comparative measurements. That the total synthesis ofracemic 
1 had in fact been achieved was rigorously demonstrated by a 
single-crystal X-ray determination of our fully synthetic mate­
rial* 

We shall in due course report on the mechanistic aspects of the 
cyclopropanation reaction as well as the interesting chemistry of 
18 and 1 and the possible implications of the latter findings on 
the mode of action of myrocin C. 
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Complex saccharides play critical roles in biological regulation,3 

and the triantenary oligosaccharide 1 which, though well-known 
as one of several high-mannose glycoproteins occurring in animals 
and plants,4,5 now attracts special attention because of its presence 
on the conserved V3 loop of the viral coat of HIVl, known as 
GP-120.6 

The mannan moiety of 1 can be dissected into three zones 
(Scheme I) whose components carry three, two, and one sugar 
units A, B, and C, respectively. Further retroanalysis of A leads 
to the retron 2 with permanent protecting groups at 02 and 04 
and different temporary protecting groups at 03 and 06. Retrons 
B and C lead to the same synthon 3, where the C2 ester serves 
for temporary protection, as required in B, or permanent, as 
required in C. Thus the nonasaccharide component of 1 could 
conceivably be constructed from only two mannopyranose pre­
cursors, 2 and 3. In this manuscript we describe the realization 
of this objective based on the novel chemistry of n-pentenyl gly­
cosides. 

The armed/disarmed strategy for saccharide coupling emanated 
from our exploratory work on NPGs,7 and two developments from 
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