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In summary, we have developed new and mild reaction con-
ditions for glycosylation of jodo sulfonamides, which has enabled
us to successfully synthesize sialyl-Lewis X antigen. Current
studies include the elaboration of glycals 5~7 to the synthesis of
gangliosides'® and glycopeptides.!!
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Myrocin C (1) is a structurally novel pentacyclic diterpene
isolated in 1988 from the soil fungus Myrothecium verrucaria
strain no. 55.! This antitumor antibiotic exhibits half the activity
of mitomyein C in an in vivo tumor inhibitory screen.2 Our
interest in the synthesis of myrocin C stemmed from two con-
siderations. The confluence of its structural features posed con-
siderable synthetic challenges which invited several potentially
interesting solutions. Furthermore, a proposed mechanism for
the biotriggering of 1 could be inferred,’ the testing of which
required access to 6-desoxymyrocin C (18). In this paper we report
the total synthesis of racemic 1 by way of 18.

A critical reaction of the synthesis occurs in the first step
wherein compound 2 was obtained from Diels—Alder cycloaddition
(THF, room temperature, 5 days, 94%) of p-benzoquinone with
2-[(tert-butyldimethylsilyl)oxy]-1-methylcyclohexa-1,3-diene*
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(note the stereochemical homology between C-1, C-4, and C-5
of 1 and the corresponding centers of 2). Oxidation’ (2,2-di-
methyldioxirane,® acetone/CH,Cl,) of 2 afforded 3, which upon
reduction’ (NaBH,, CeCl;.7H,0, MeOH), acetylation (Ac,0,
Et;N, DMAP, CH,Cl,), and desilylation (TBAF, AcOH, THF)
gave 4 (59% overall from 2). Cleavage of the vicinal “diol” linkage
(NalQ,, THF/H,0) followed by reduction (NaBH,, MeOH) of
the lactone aldehyde and protection (TBSOTY, Et;N, CH,Cl,)
of the primary alcohol afforded § in 99% overall yield from 4.
Deacetylation (NaOMe, MeOH) and subsequent oxidation
(PDC,? CH,Cl,) afforded enone 6, which was stereospecifically
epoxidized® (H,0,, NaOH, MeOH) to afford epoxy ketone 7 (66%
overall yield from §). The resulting oxiranyl linkage exhibited
surprising stability to the following sequence: (i) enol triflation'®
(NaHMDS, Tf,NPh, THF), (ii) cross-coupling!! (Bu;SnCH=
CH,, PdCI1,(PPh;),, LiCl, THF), (iii) desilylation (TBAF, AcOH,
THF), and (iv) mesylation (MsCl, Et;N, DMAP, CH,Cl,).
Compound 8 was thus obtained in 40% overall yield from 7
(Scheme I).

The elements were then in place for the defining reaction of
the synthesis. Upon treatment of compound 8 with (trimethyl-
stannyl)lithium!? in THF, cyclopropyl dienol 10 was produced
in 66% yield, presumably through the intermediacy of allyl-
stannane 9.3 It will be recognized that this transformation
accomplishes installation of the cyclopropane while liberating the
C-7 alcohol. The latter, of course, is destined to become the C-7
ketone in 1. However, before that oxidation, this alcohol serves
another important strategic end. Thus, condensation (DCC,
DMAP, CH,Cl,) of 10 with (E)-3-methyl-4-oxo-2-butenoic acid'*
afforded 11, which upon thermolysis (PhH, reflux, 13 h) gave,
by endo addition of the aldehyde function, the adduct 12. Wittig
olefination (Ph;P=CH,, THF) provided 13 (79% overall yield
from 10) in which C-14 had undergone complete epimerization
to the S-configuration. This intramolecular Diels~Alder reac-
tion,"’ achieved through the C-7 ester tether, has not only provided
a usefully functionalized C-ring but has also enabled rigorous
control of the remote C-13 chiral center.

The now extraneous carbon (C-21) was excised as follows.
Reduction (DIBAL-H, CH,Cl,) of 13 gave a bislactol which upon
selective oxidation (PDC, CH,Cl,) afforded compound 14 (74%).
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Scheme I

15: R= |; X= B-H, a-OCHO
16:Re H; X=0

12: X=Y=0; C-14Ha
13: X= 0. Y= CHy; C-14Hp
14: X= H, OH; Y= CHy; C-14HB

: X = OH; myrocin C

Photolytically mediated iodinative cleavage!® (PhI(OAc),, L,
cyclohexane) of the lactol linkage gave rise to iodo formates 15
(7:1 ﬁ/ a), which upon reductive dejodination/deformylation
(neat!” Bu,SnH, AIBN) and oxidation (Dess—Martin per-
jodinane,'® CH,Cl,) provided ketone 16. Concomitant enone
conjugation and stereospecific epoxidation (H,0,, NaOH, MeOH)
gave 17 in 50% overall yield from 14 (Scheme II).

Oxirane opening (4-OMePhSAIMe;Li,'? THF) followed by
sulfoxide formation (2,2-dimethyldioxirane, acetone/CH,Cl,) and
spontaneous elimination provided desoxymyrocin C (18) in 55%
overall yield. Finally, C-6 hydroxylation® (O,, z-BuOK,
THF/t-BuOH) was achieved via the presumed, but uncharac-
terized, C-6 hydroperoxide which was immediately reduced
(P(OEt),, THF) to give dl-myrocin C (1), mp >214 °C deg, in
68% yield. While the spectral properties of the fully synthetic
material corresponded very closely to those recorded for the natural
product, a sample of the latter was not available to us for direct
comparative measurements. That the total synthesis of racemic
1 had in fact been achieved was rigorously demonstrated by a
singée-crystal X-ray determination of our fully synthetic mate-
rial ¥

We shall in due course report on the mechanistic aspects of the
cyclopropanation reaction as well as the interesting chemistry of
18 and 1 and the possible implications of the latter findings on
the mode of action of myrocin C.
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Complex saccharides play critical roles in biological regulation,’
and the triantenary oligosaccharide 1 which, though well-known
as one of several high-mannose glycoproteins occurring in animals
and plants,*5 now attracts special attention because of its presence
on the conserved V3 loop of the viral coat of HIV1, known as
GP-120.°

The mannan moiety of 1 can be dissected into three zones
(Scheme I) whose components carry three, two, and one sugar
units A, B, and C, respectively. Further retroanalysis of A leads
to the retron 2 with permanent protecting groups at O2 and O4
and different temporary protecting groups at O3 and O6. Retrons
B and C lead to the same synthon 3, where the C2 ester serves
for temporary protection, as required in B, or permanent, as
required in C. Thus the nonasaccharide component of 1 could
conceivably be constructed from only two mannopyranose pre-
cursors, 2 and 3. In this manuscript we describe the realization
of this objective based on the novel chemistry of n-pentenyl gly-
cosides.

The armed/disarmed strategy for saccharide coupling emanated
from our exploratory work on NPGs,’” and two developments from
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